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Abstract /\{4 7;

It is shown that the difference between the Hellmann-Feynman

theorems in two different,coordinate systems is in general a
- /
hypervirial theorem. )J«Aj:&/t)

;
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1-4 . . .
Recently there has been considerable interest in the fact that
the Hellmann-Feynman theorem takes different forms depending on the
coordinate system one uses. Thus if we are using coordinates Xy, and

if N is a parameter then the (generalized) Hellmann-Feynman theorem

may be written

E’ = (+x, H; Yx)

where we have denoted differentiation with respect to }\ by a prime
and where the subscript X on Q{ and H is to remind us that they
are the wave function and Hamiltonian appropriate to the Xg. coordinate

system. Similarly if we use coordinates Ye. we have

EiI:' (%9> ¥\; ‘¥9>

from which we infer that

(&, Wy &) — (b, By &) =0 (1)

For the example discussed in references 1-3 eq. (1) has been
found to be the virial theorem. In the example discussed in reference
4 eq. (1) is found to be again of a similar form. It is the purpose
of this note to show that in general eq. (1) is a hypervirial theorem.5

To do this we assume6 that the transformation from the ><K



system to the Ve system can be accomplished by means of a unitary

transformation
Yy O (2)
+
H"/:‘ OH,U (3)
From this it follows that
/
t t +
H)::‘UHxU* + O U ongu %)

..‘.

We now make use of \Y UA" to find
/ + )
otf'uo+ UTU =0
Using this eq. (4) becomes

,\—
bie 0 Be (07U, 8

Thus using eq. (2), eq. (1) may be written

(Q’x, (J U‘) W) %) =0 )

+
which is the hypervirial theorem for v U,
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To write down a general formula for UL would be quite complicated.

However for the examples discussed in references 1-4 it is sufficient

(see footnote 6) to consider simple scalings Y= X\ Yy

case it is known (see for example reference 8a) that

>
U‘\’Ul__ L Z CPeXe + X )
2hx €=l

For this

where Y%; is the momentum canonically conjugate to Xk , and where we

have scaled s coordinates. When inserted into eq. (5) this yields the

results which we have already mentioned, though it is by no means the

simplest way of deriving them.
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